Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38396195

RESUMO

There is a significant co-occurrence of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms linking chronic opioid use, withdrawal, and the development of PTSD are poorly understood. Our previous research has shown that proinflammatory cytokines, expressed primarily by astrocytes in the dorsal hippocampus (DH), play a role in the development of heroin withdrawal-enhanced fear learning (HW-EFL), an animal model of PTSD-OUD comorbidity. Given the role of astrocytes in memory, fear learning, and opioid use, our experiments aimed to investigate their involvement in HW-EFL. Experiment 1 examined the effect of withdrawal from chronic heroin administration on GFAP surface area and volume, and identified increased surface area and volume of GFAP immunoreactivity in the dentate gyrus (DG) following 24-hour heroin withdrawal. Experiment 2 examined astrocyte morphology and synaptic interactions at the 24-hour withdrawal timepoint using an astroglial membrane-bound GFP (AAV5-GfaABC1D-lck-GFP). Although we did not detect significant changes in surface area and volume of GfaABC1D-Lck-GFP labelled astrocytes, we did observe a significant increase in the colocalization of astrocyte membranes with PSD-95 (postsynaptic density protein 95) in the DG. Experiment 3 tested if stimulating astroglial Gi signaling in the DH alters HW-EFL, and our results demonstrate this manipulation attenuates HW-EFL. Collectively, these findings contribute to our current understanding of the effects of heroin withdrawal on astrocytes and support the involvement of astrocytes in the comorbid relationship between opioid use and anxiety disorders.

2.
Psychopharmacology (Berl) ; 240(2): 347-359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633660

RESUMO

Post-traumatic stress disorder (PTSD) and opioid use disorder (OUD) are comorbid in clinical populations. However, both pre-clinical and clinical studies of these co-occurring disorders have disproportionately represented male subjects, limiting the applicability of these findings. Our previous work has identified chronic escalating heroin administration and withdrawal can produce enhanced fear learning. This behavior is associated with an increase in dorsal hippocampal (DH) interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and glial fibrillary acidic protein (GFAP) immunoreactivity. Further, we have shown that these increases in IL-1ß and TNF-α are mechanistically necessary for the development of enhanced fear learning. Although these are exciting findings, this paradigm has only been studied in males. The current studies aim to examine sex differences in the behavioral and neuroimmune effects of chronic heroin withdrawal and future enhanced fear learning. In turn, we determined that chronic escalating heroin administration can produce withdrawal in female rats comparable to male rats. Subsequently, we examined the consequence of heroin withdrawal on future enhanced fear learning and IL-1ß, TNF-α, and GFAP immunoreactivity. Strikingly, we identified sex differences in these neuroimmune measures, as chronic heroin administration and withdrawal does not produce enhanced fear learning or immunoreactivity changes in females. Moreover, we determined whether heroin withdrawal produces short-term and long-term anxiety behaviors in both female and males. Collectively, these novel experiments are the first to test whether heroin withdrawal can sensitize future fear learning, produce neurobiological changes, and cause short-term and long-term anxiety behaviors in female rats.


Assuntos
Heroína , Fator de Necrose Tumoral alfa , Feminino , Masculino , Ratos , Animais , Caracteres Sexuais , Ratos Sprague-Dawley , Ansiedade , Entorpecentes/farmacologia , Medo
3.
Alcohol Clin Exp Res ; 46(12): 2177-2190, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36349797

RESUMO

BACKGROUND: Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature. METHODS: We used a 15-day exposure to the 5% w/v EtOH low-fat Lieber-DeCarli liquid diet in combination with the stress-enhanced fear learning (SEFL) paradigm to investigate the effects of chronic EtOH consumption on the development of a PTSD-like phenotype. Next, we used a reverse transcription quantitative real-time polymerase chain reaction to quantify mRNA expression of glial cell markers GFAP (astrocytes) and CD68 (microglia) following severe footshock stress in EtOH-withdrawn rats. Finally, we tested the functional contribution of dorsal hippocampal (DH) astrocytes in the development of SEFL in EtOH-dependent rats using astrocyte-specific Gi designer receptors exclusively activated by designer drugs (Gi -DREADD). RESULTS: Results demonstrate that chronic EtOH consumption and withdrawal exacerbate future SEFL. Additionally, we found significantly increased GFAP mRNA expression in the dorsal and ventral hippocampus and amygdalar complex following the severe stressor in EtOH-withdrawn animals. Finally, the stimulation of the astroglial Gi -DREADD during EtOH withdrawal prevented the EtOH-induced enhancement of SEFL. CONCLUSIONS: Collectively, results indicate that prior EtOH dependence and withdrawal combined with a severe stressor potentiate future enhanced fear learning. Furthermore, DH astrocytes significantly contribute to this change in behavior. Overall, these studies provide insight into the comorbidity of AUD and PTSD and the potential neurobiological mechanisms behind increased susceptibility to a PTSD-like phenotype in individuals with AUD.


Assuntos
Alcoolismo , Astrócitos , Animais , Ratos , Astrócitos/metabolismo , Medo , Hipocampo/metabolismo , Etanol/farmacologia , Etanol/metabolismo , RNA Mensageiro/metabolismo
4.
Brain Behav Immun Health ; 26: 100542, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36388136

RESUMO

Post-traumatic stress disorder (PTSD) is a devastating disorder that involves maladaptive changes in immune status. Using the stress-enhanced fear learning (SEFL) paradigm, an animal model of PTSD, our laboratory has demonstrated increased pro-inflammatory cytokine immunoreactivity in the hippocampus following severe stress. Recent clinical trials have demonstrated 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy as an effective novel treatment for PTSD. Interestingly, MDMA has been shown to have an immunosuppressive effect in both pre-clinical and clinical studies. Therefore, we predict MDMA administration may attenuate SEFL, in part, due to an immunosuppressive mechanism. The current studies test the hypothesis that MDMA is capable of attenuating SEFL and inducing alterations in expression of TNF-α, IL-1ß, glial fibrillary acidic protein (GFAP), an astrocyte specific marker, and ionized calcium-binding adapter molecule -1 (IBA-1), a microglial specific marker, in the dorsal hippocampus (DH) following a severe stressor in male animals. To this end, experiment 1 determined the effect of MDMA administration 0, 24, and 48 h following a severe foot shock stressor on SEFL. We identified that MDMA administration significantly attenuated SEFL. Subsequently, experiment 2 determined the effect of MDMA administration following a severe stressor on the expression of TNF-α, IL-1ß, GFAP, and IBA-1 in the DH. We found that MDMA administration significantly attenuated stress-induced IL-1ß and stress-reduced IBA-1 but had no effect on TNF-α or GFAP. Overall, these results support the hypothesis that MDMA blocks SEFL through an immunosuppressive mechanism and supports the use of MDMA as a potential therapeutic agent for those experiencing this disorder. Together, these experiments are the first to examine the effect of MDMA in the SEFL model and these data contribute significantly towards the clinical PTSD findings.

5.
Alcohol ; 91: 61-73, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33429015

RESUMO

The rising popularity of alcohol mixed with energy drinks (AmEDs) has become a significant public health concern, with AmED users reporting higher levels of alcohol intake than non-AmED users. One mechanism proposed to explain this heightened level of alcohol intake in AmED users is that the high levels of caffeine found in energy drinks may increase the positive reinforcing properties of alcohol, an effect that may be dependent on interactions between adenosine receptor signaling pathways and the dopamine D2 receptor. Therefore, the purpose of the current study was to confirm whether caffeine does increase the positive reinforcing effects of alcohol using both fixed ratio (FR) and progressive ratio (PR) designs, and to investigate a potential role of the dopamine D2 receptor to caffeine-induced increases in alcohol self-administration. Male Long-Evans rats were trained to self-administer a sweetened alcohol solution (10% v/v alcohol + 2% w/v sucrose) on an FR2 schedule of reinforcement, and the effects of caffeine (0, 5, 10, and 20 mg/kg, i. p. [intraperitoneally]) on the maintenance of alcohol self-administration and alcohol break point were examined. Parallel experiments in rats trained to self-administer sucrose (0.8% w/v) were conducted to determine whether caffeine's reinforcement-enhancing effects extended to a non-drug reinforcer. Caffeine pretreatment (5-10 mg/kg) significantly increased sweetened alcohol self-administration and motivation for a sweetened alcohol reinforcer. However, similar increases in self-administration of a non-drug reinforcer were not observed. Contrary to our hypothesis, the D2 receptor antagonist eticlopride did not block a caffeine-induced increase in sweetened alcohol self-administration, nor did it alter caffeine-induced increases in motivation for a sweetened alcohol reinforcer. Taken together, these results support the hypothesis that caffeine increases the positive reinforcing effects of alcohol, which may explain caffeine-induced increases in alcohol intake. However, the reinforcement-enhancing effects of caffeine appear to be independent of D2 receptor function.


Assuntos
Consumo de Bebidas Alcoólicas , Cafeína , Etanol/administração & dosagem , Receptores de Dopamina D2/fisiologia , Animais , Cafeína/farmacologia , Condicionamento Operante , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Long-Evans , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...